無理数の連分数を使った近似

青木 昌雄 aoki.masao@h.hokkyodai.ac.jp

2016年7月14日

連分数近似

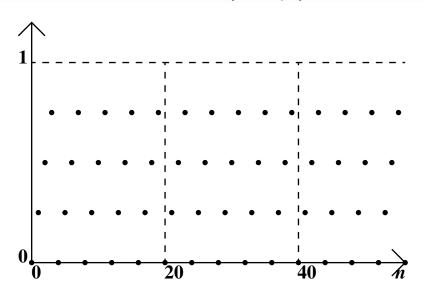
実数 x の連分数展開を使うと、x を近似する有理数を求めることができた。

x が有理数により近似されている様子を、nx の小数部分

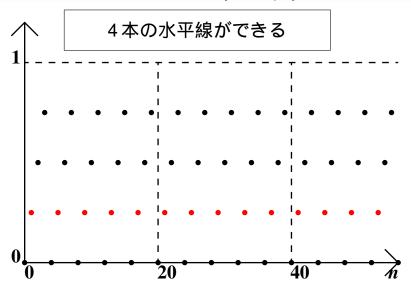
$$nx - [nx]$$
 $(n = 1, 2, 3, ...)$

に注目して図示する。

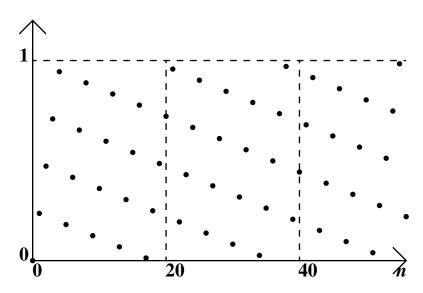
nx の小数部分 (x = 9/4)



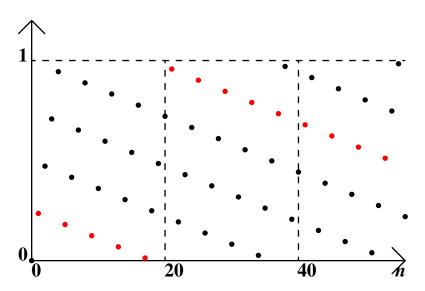
nx の小数部分 (x = 9/4)

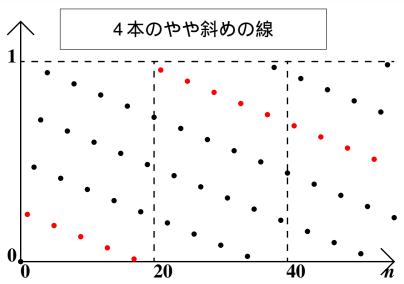


nx の小数部分 $(x = \sqrt{5})$

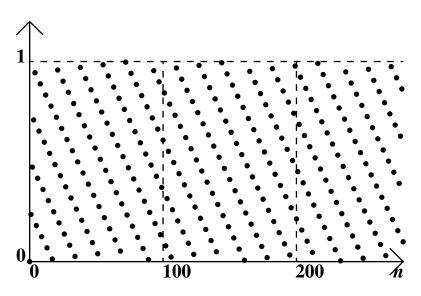


$\sqrt{5} = 9/4$

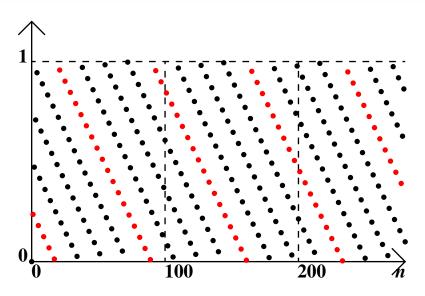




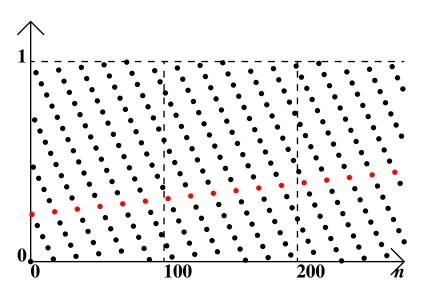
nx の小数部分 $(x = \sqrt{5})$



$\sqrt{5} = 9/4$?



$\sqrt{5} = 38/17$



√5 の連分数を使った近似

$$\sqrt{5} = [2, 4, 4, 4, \dots] = 2 + \frac{1}{4 + \frac{1}{4 + \frac{1}{4 + \dots}}}$$

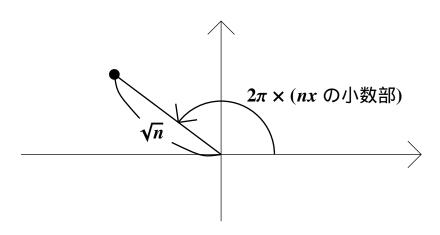
$$\frac{p_1}{q_1} = [2, 4] = 2 + \frac{1}{4} = \frac{9}{4}$$

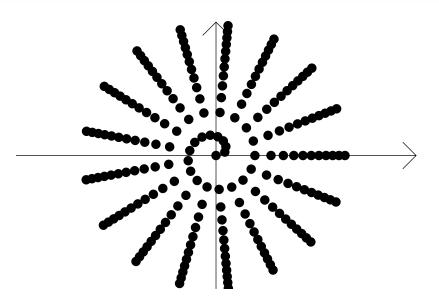
$$\frac{p_2}{q_2} = [2, 4, 4] = 2 + \frac{1}{4 + \frac{1}{4}} = \frac{38}{17}$$

$$\frac{p_3}{q_3} = [2, 4, 4, 4] = 2 + \frac{1}{4 + \frac{1}{4 + 1/4}} = \frac{161}{72}$$

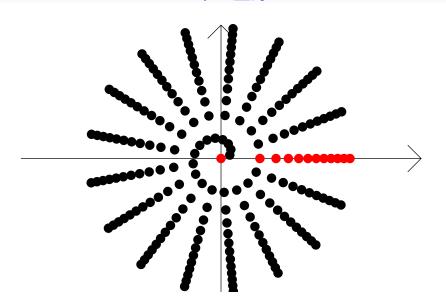
極形式による図示

原点からの距離が \sqrt{n} , 偏角が $2\pi \times nx$ となる位置に点を打っていく。

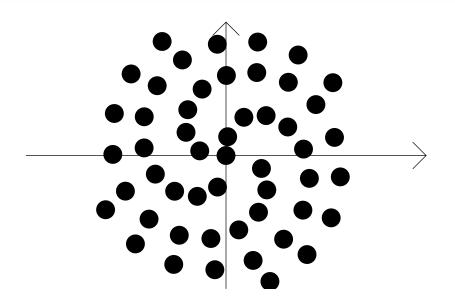




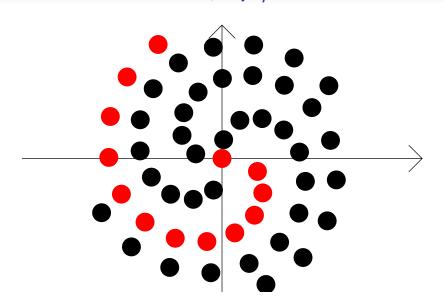
17本の直線



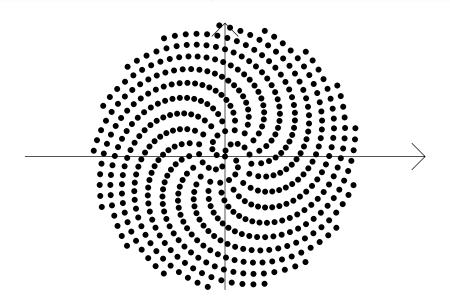
 $x = \sqrt{5}, \quad n \le 50$



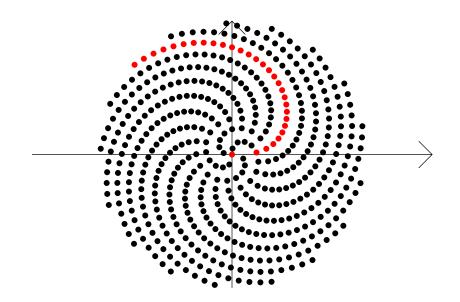
$x = \sqrt{5} = 9/4$

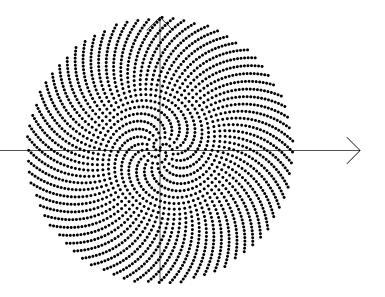


$$x = \sqrt{5}, \quad n \le 500$$

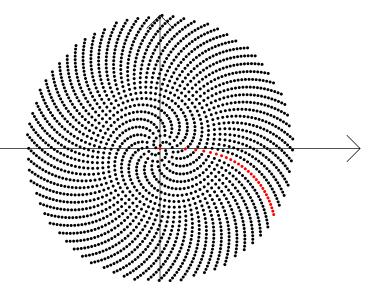


$$x = \sqrt{5} = 38/17$$





$x = \sqrt{5} = 161/72$



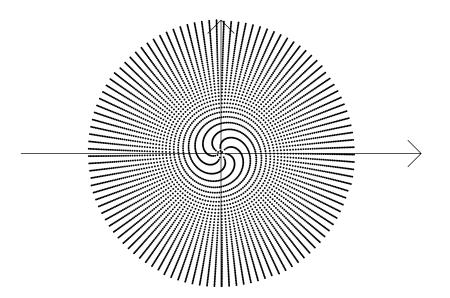
点の分布

もしnx の小数部分に規則性が全くないなら、N 個の点は半径 \sqrt{N} の円内に均等に散らばるはず。

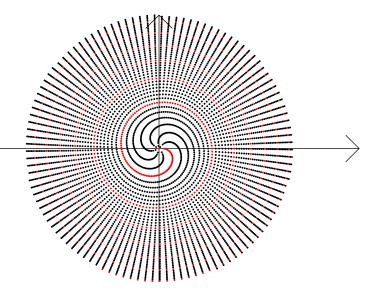
x が有理数のときは、その分母の数だけ放射状の 直線ができる。

x が有理数 p/q で近似されるときには、q 本の「腕」が見える。

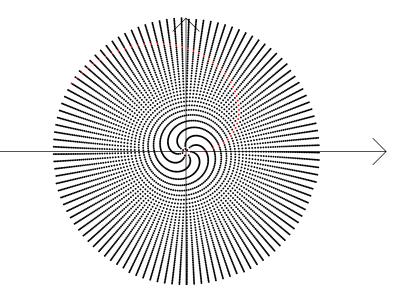
 $x=\pi$, $n \leq 5000$



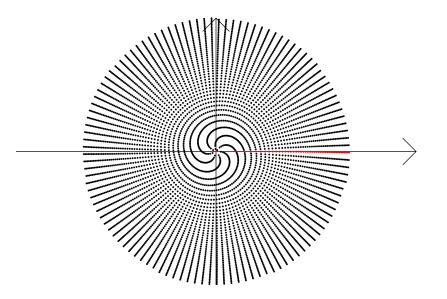
$\pi = 22/7$



$\pi = 333/106$



$\pi = 355/113$



πの連分数を使った近似

$$\pi = [a_0, a_1, a_2, a_3, a_4, \dots]$$

= [3, 7, 15, 1, 292, \dots]

$$\frac{p_0}{q_0} = 3$$
, $\frac{p_1}{q_1} = \frac{22}{7}$, $\frac{p_2}{q_2} = \frac{333}{106}$, $\frac{p_3}{q_3} = \frac{355}{113}$

 a_{n+1} が大きな数のとき、 q_n 本の腕がはっきり見える

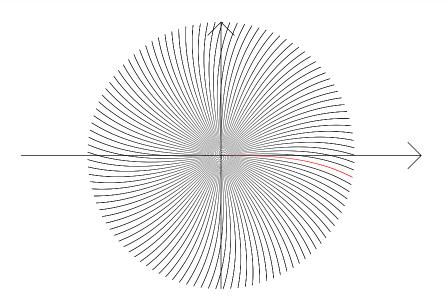
πの連分数を使った近似

近似の誤差

$$\left|x - \frac{p_n}{q_n}\right| \le \frac{1}{q_n q_{n+1}} = \frac{1}{q_n (a_{n+1} q_n + q_{n-1})}$$

 a_{n+1} が大きいほど、(分母 q_n の大きさと比べて) 誤差が小さい、よい近似である。

$x = \pi, \quad n \le 100000$



黄金比

$$\frac{1+\sqrt{5}}{2} = [1,1,1,1,\ldots] = 1 + \frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}$$

$$\frac{p_1}{q_1} = \frac{1}{1}, \quad \frac{p_2}{q_2} = \frac{2}{1}, \quad \frac{p_3}{q_3} = \frac{3}{2}, \quad \frac{p_4}{q_4} = \frac{5}{3},$$

$$\frac{p_5}{q_5} = \frac{8}{5}, \quad \frac{p_6}{q_6} = \frac{13}{8}, \ldots$$

黄金比の有理数近似の効率は悪い。

